Lesson 2: Composting Fundamentals

Learning Objectives:

- Be familiar with the microbes responsible for composting
- Understand conditions and impacts of aerobic vs. anaerobic decomposition
- Know the five fundamental principles of composting
- Know the characteristics and functions of bulking agents
Composting is a Microbial Process

Organic Materials + Water + Air → Microbes → CO₂ + Water Vapor + Heat + Compost
Aerobic vs. Anaerobic Digestion

Aerobic Microbes

Organic Materials
+ Water
+ Air

→

CO₂ + NO₃ + NH₄
+ Water Vapor + Heat
+ Compost

Anaerobic Microbes

Organic Materials
+ Water

→

CH₄ + CO₂ + NH₃ + H₂S
+ Water Vapor
+ Digestate
Composting Microbes

- Bacteria – primary decomposer; they generate the heat; many types involved in composting
 - Thermophilic bacteria active at 35 to 50°C (the fast decomposers)
 - Mesophilic bacteria active at 20 to 30°C

- Actinomycetes – not as efficient as bacteria, prefer woody materials, active at mesophilic temperatures

- Fungi – major decomposers but not as efficient as bacteria, active at mesophilic temperatures
Composting Macro-organisms

- Earthworms – capable of fully digesting organic waste, they coat materials with film that helps retain nutrients
- Insects – many kinds found in compost, they feed on organic matter, micro-organisms and other macro-organisms
- Nematodes – eat bacteria, fungal spores & other micro-organisms
- Mites – primarily eat yeast cells
Primary Needs of Composting Microbes

- Carbon – for carbohydrates for energy
- Nitrogen – for nutrients and proteins to build biomass
- Oxygen – for aerobic respiration
- Moisture – necessary for biological functions
- pH - initial range of 5 to 8 is preferable
Recommended Conditions for Rapid Composting

<table>
<thead>
<tr>
<th>Condition</th>
<th>Reasonable Range</th>
<th>Preferred Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture content</td>
<td>40% – 65%</td>
<td>50% - 60%</td>
</tr>
<tr>
<td>Temperature</td>
<td>110°F - 150°F</td>
<td>130°F - 140°F</td>
</tr>
<tr>
<td>pH</td>
<td>5.0 - 9.0</td>
<td>6.5 - 8.0</td>
</tr>
<tr>
<td>Porosity</td>
<td>30% - 80%</td>
<td>50% - 80%</td>
</tr>
</tbody>
</table>
Composting Optimizes Conditions for Decomposition

Compost pile

Heat

CO₂

Water Vapor

Fresh Air (Oxygen)

Compost

Hot Rapid Decomposition

Wet & Dry Organic Material
The Practical Goals of Composting

- Facilitate microbial decomposition
- Generate sufficient microbial activity to generate enough heat to destroy weed seeds and pathogens
- Try to make the highest quality product in the most efficient way possible
- Focus on process control and act quickly when problems occur so that they do not become nuisances
Five Fundamental Principles

1. Proper ratio of Carbon to Nitrogen
2. Proper particle size to balance surface area and pore space
3. Proper moisture content
4. Mix materials and do not compact
5. Monitor temperature, moisture & odor
Principle 1 – Proper C:N Ratio

- Proper Carbon to Nitrogen (C:N) ratio is necessary to optimize composting conditions.
- C:N = 30:1 to 40:1 is optimum for composting.
- If C:N < 20:1, odors occur and nutrients may be lost.
- If C:N > 40:1, composting process slows down.
Good Sources of Carbon

<table>
<thead>
<tr>
<th>Source</th>
<th>Carbon:Nitrogen Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yard trash</td>
<td>50 – 90:1</td>
</tr>
<tr>
<td>Straw & hay</td>
<td>50 – 80:1</td>
</tr>
<tr>
<td>Wood chips & sawdust</td>
<td>250 – 500:1</td>
</tr>
</tbody>
</table>
Good Sources of Nitrogen

<table>
<thead>
<tr>
<th>Source</th>
<th>C:N Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetable Scraps</td>
<td>10 – 30:1</td>
</tr>
<tr>
<td>Fruit Scraps</td>
<td>10 – 30:1</td>
</tr>
<tr>
<td>Grass & Garden Cleanings</td>
<td>10 – 20:1</td>
</tr>
<tr>
<td>Chicken Manure</td>
<td>10 – 25:1</td>
</tr>
<tr>
<td>Cow Manure</td>
<td>20 – 30:1</td>
</tr>
<tr>
<td>Horse Manure</td>
<td>25 – 30:1</td>
</tr>
</tbody>
</table>
Principle 2 – Proper Particle Size

- Breaking large pieces of materials into small pieces will increase the surface area where “bugs” can live and feed.
- This speeds up composting.
- Not too big and not too small - a mixture of 1/4 – 4 inch size materials is ideal.
- Pieces that are too small will not allow fresh air to flow through it.
Principle 3 – Proper Moisture and Air

- A compost pile needs water because the organisms grow in a moist environment.
- However, too much water and organisms drown without oxygen.
- 40% - 50% moisture content (MC) is optimum to provide organisms with both air and water.
Principle 4 – Mix Well; Do Not Compact

- Mix carbon & nitrogen materials together to provide a balanced diet
- Add water if mixture is too dry; or add more dry materials if mixture is too wet
- Do not compress/compact the mixture; keep space for air to flow in the compost pile
Principle 5 - Monitor the Compost Process

- Temperature – the primary way to determine if the bugs are healthy
- Moisture & Air – easily assessed by inspecting the quality of the compost pile
- Smell – Odor is a key indicator of whether composting is progressing properly
What is a Bulking Agent?

“Dry material that provides carbon, structural support and pore space for nitrogenous materials”

- Must be readily available for composting operation, e.g. ground yard trash
- Ideal bulking agent is dry
- Amount used depends on C:N ratio & Moisture Content
Multiple Functions of Bulking Agent

- Carbon source for high nitrogen materials
- Structural support and low bulk density to provide pore space
- Low MC for wet materials
Four Stages of Composting Operation

Wet Organic Material:
- Food waste
- Manure
- Grass clippings
- Garden scraps

Dry Organic Material (bulking agent):
- Dry Leaves & Trimmings
- Wood Chips & Sawdust

High-quality Finished Compost
Two Types of Materials Are Needed

Dry Organic Materials

- Are high in carbon & low nitrogen
- Tend to be dry
- Have structure to allow aeration
- Carbon is primary food for composting organisms
- Includes such materials as:
 - Wood chips
 - Brush and tree trimmings

Wet Organic Materials

- Are high in nitrogen & low in carbon
- Have a high moisture content
- Nitrogen is primary building block for composting organisms
- Includes such materials as:
 - Grass
 - Fruits
 - Vegetables
Putting the Fundamentals into Practice

A correctly built and managed composting pile will:

- Reach high temperatures
- Destroy weed seeds
- Control pathogens
- Avoid odor problems
- Produce finished compost in 2 – 3 months
Putting the Fundamentals into Practice

- Managing the composting operation to optimize conditions requires many things (a preview of upcoming training topics):
 - Site selection and design
 - Composting methods
 - Equipment and staffing
 - Operational controls
 - Monitoring & recordkeeping
 - Site maintenance
 - But first, Regulatory Compliance